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Markov Chain Simulations of Binary Matrices

William B. Krebs

Abstract: We consider Markov chains to simulate graphs with a fixed
degree sequence and binary matrices with fixed row and column sums. By
means of a comtinatorial construction, we bound the subdominant eigen-
values of the chains. Under certain additional conditions, we show that the
bounds are polynomial functions of the degree sequences and the row and

column sums, respectively.

1. Introduction:

Let M be a given m x n matrix whose entries are Os and 1s. We want to choose a
matrix N distributed uniformly over those m x n 0-1 matrices with the same row

and column sums as M.

Let M(ty,12;71,72] be a 2 x 2 submatrix of M taking one of the two forms

oil = L)

Exchange Os and 1s in M[i},12; 71, j2], and call the resulting matrix M'. It is clear
that the row and column sums M’ are the same as those of M. the operation taking

M to M' is called an interchange.

The interchange operation defines a graph structure on the binary matrices whose
row and columnn sums equal those of M. The set of such matrices forms our vertex
set; if N and N' are vertices, an edge joins them if there is an interchange taking

N to N'. Call this graph the interchange graph.

One way or si. lating an approximately uniformly distributed 0-1 matrix with
fixed row and column sums is by defining an irreducible Markov chain {Af;} on the
interchange graph with uniform stationary distribution. If T is a function defined

on 0-1 matrices, then

1 n
=Y T(M) - ET
n

1
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with probability 1. If My is a fixed matrix in this set, we can then estimate P[T >
T(Mp)) by simulating the Markov chain and computing empirical probabilities after
a suitably large number of transitions. In particular, let D be the maximum degree
of any vertex in the interchange graph, let p < D~!, and for a vertex M, define
PM,M'Y=p if {M,M'}is an edge
P(M,M)=1-Dp
P(M,M')=0 otherwise
It may be shown that these transitions define an irreducible Markov chain on the

interchange graph with uniform stationary distribution. Call such a chain a modified
random walk.

The effectiveness of this approach depends on how rapidly the distribution of M;
converges to the uniform distribution. For binary matrices with fixed row and col-
umn sums, the state space may be very large indeed. In general, it is approximately
a hyper-exponential function of the size of the matrix M. See Good and Crook [4]
for asymptotic approximations, as well as exact recurrence formulas for certain spe-
cial cases. Ideally, we want the number of steps needed fer the distribution of M;
to converge to be a polynomial in the “size” of M. The main result of this paper
is that for a particular modified random walk on the interchange graph, the eigen
value defining this “relaxation time” is bounded by a polynomial in the number of
non-zero entries and the number of rows and columns in M, but is otherwise inde-

pendent of the number of 0-1 matrices satisfying the row-column sum restrictions.

Binary matrices with row ard columns sums fixed can be regarded as matrix rep-
resentations of bipartite graphs with a given degree sequence. The problem of sim-
ulating general graphs with a fixed degree sequence can be approached by similar
methods. Here, one constructs a Markov chain on a space of graphs by selectively
adding, removing, or exchanging individual edges in the graph. Again, under cer-
tain restrictions on the degree sequence, we show that the subdominant eigenvalue

of this chain is bounded by a polynomial in the total number of edges.

Uniform distributions on spaces of integer matrices subject to various row and
column constraints arise in a number of areas. A very specific example is in biogeo-

graphical ecology. Here we have a collection of habitats under study and a collection
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of species of interest. For each habitat, we know which species occur in that habitat.
If we write the data as an incidence matrix of species in habitats, we get a binary

matrix, say Mp.

Ecologists are particularly interested in whether or not two species compete. One
way of assessing the degree of competition between two species ¢ and j is to count
the number t;; of habitats where both species occur and then compute the prob-
ability that a random arrangement of species in habitats would have ¢;; or fewer
common habitats for species : and j. We restrict the random arrangements by re-
quiring that in any such arrangement, each species must occupy the same number
of habitats and each habitat must support the same number of species as in our
original My. Then the desired probability is P[T;;(M) > t;;}, where M is uniformly
distributed over binary matrices with row and column sums equal to those of Mp.
See Simberloff[9], Conner and Simberloff(3], and Simberloff and Zaman [10] for more
detailed discussion of this problem.

Another place where ra:idom integer matrices arise is in the study of contingency ta-
bles. Here, conventional statistical analysis might begin by testing for independence
of rows and columns by means of the x? statistic. If the hypothesis of independence

is strongly rejected, there is a need for some alternative probability model to de-
scribe the table.

One alternative that has been proposed is a uniform distribution on the space of
contingency tables with a given set of marginal totals. In the setting of the present
paper, the state space may be regarded as the set of contingency tables with the
further restriction that all entries be either 0 or 1. Diaconis and Efron [5] discuss this
model for contingency tables, along with a family of other models. They provide
a formula for computing approximate probabilities for this distribution. Markov
chain simulat.ons using the interchange formula provide an alternative means for

computing provabilities for this distribution.

In Section 2 of this paper, we review some standard definitions and notation for
binary matrices, graph theory, and Markov chains. In Secction 3, we prove an
essential graph theory lemma, and then apply it to bounding the eigenvalue of a

Markov chain for generating an almost-uniformly distribuicd graph with a fixed



degree sequence. The main results of this paper are Propositions 6 and 7 in section
4, where we compute a bound for the rate of convergence of a random walk on
the interchange graph for a space of binary matrices. Afterwards, we discuss the

convergence rates of functions of the chain.

2. Some Definitions:

For integer sequences r = (ry,...,ry) and s = (s1,...,5n), let be 2A(r,s) be the
set of binary matrices with row sums r and column sums s, and suppose that
A(r,s) # 0.

Define a graph T = (2%, £), with & = A(r, s), and edge set £ defined by {M,M'} € £

if there exist rows ¢; and i and columns j; and j; such that

Coe . 1 0 C 01
M[tl’zz;Jl’lez[O 1] 1"1'(1],'2;.71!]2]:[1 0] 2.
(1)
L 0 1 - 1.9
M[t1112;311.]2]=[1 0} M[l],lz;]l,J'.’]:[o 1]

and Mk, 1) = M'[k,1], for k # 1,,1; or | # j;,j;. Call the operation taking M to
M' an interchange, and I the interchange graph on 2A(r,s). We will often write
cither of these two interchanges in the form (i, 12; J1, j2)-

One important interpretation of A(r, s) is as the set of bipartite graphs with biparti-
tion {1,...,m;m+1,...,m+n} and degree sequence ry,...,rm;51,...,5,. Weshall

use either the graph or the matrix interpretation of 2, according to convenience.

For binary matrices A = la;;] and B = [b;}], let

A® B =[ai; + b;; (mod 2)] AV B = [max{a,j, b} ].

For future reference, we will review some standard graph theory notions. Let G =
{V,£) be an arbitrary graph. Say that v = {z4,1;,...,24,7441 = 2o} Is a circuit
if To,...,7 arc vertices and {z;,7,4,} is an edge for i = 0,..., k. If, in addition,
Tg,..., T are distinct we say that v is elementary. Say that G is Eulerian if there

exists a circuit g that traverses every edge in £ exactly once; we call the circuit 8
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an Eulerian circuit. We recall the elementary result that a graph is Eulerian if and

only if it is connected and contains either no or two vertices of odd degree.

The fundamental result on interchanges is that the interchange graph is connected,

known as Ryser’s Theorem.

Theorem 1. Let A and B be matricesin U(r,s) and let B-A = Cy+- - -+C,, where
Ci,...,Cy are disjoint elementary circuits. Let the number of non-zero entries of
Ci be2k;,i =1,...,q. Then there exists a sequence of k; +- - -+ kg — g interchanges

which transforms A into E.

Proof: This is Theorem 3.2 in Brualdi[2].

We will also need some standard ideas about Markov chains. Let P be an irreducible
aperiodic Markov transition matrix on some finite set. Then it is well-known that
P has a unique staticnary distribution 7, and ||[P"(z,0) — n(o)|! < B!, where B, is

the subdominant eigenvalue of P.

Given some knowledge of the geometry of our state space, we can bound 3,. Let
P be reversible, so that n(z)P(z,y) = n(y)P(y,z) for all states £ and y. Let
Q(z,y) = =(2)P(z,y). For each pair {z,y} in the state space, suppose there is a
path 7,y connecting z to y. Let

n= m‘zucQ(c)'l Z 7(z)w(y).

R TEL

Then, the following theorem holds.

Theorem 2. For a reversible, irreducible Markov chain P, the second largest eigen-

value satisfies

1

3, <1 -
A < 812

Proof: This is Proposition 7 in Diaconis and Stroock[6].

Finally, for arbitrary matrices A, B, define the matrix

diag(4, B) = (3 g)
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If \y,..., An arereal numbers, diag();, ..., An) will denote the n xn diagonal matrix
with entries A1,..., An.

3. Generating Graphs by Edge Perturbations:

Let d = (d;,...,ds) be a sequence of positive integers. Let G(d) = G be the set of
graphs with degree sequence d, and suppose that G # 0. Let G’ be the set of graphs
with degree sequences d' = (d},...,d],) satisfying
i. d;<di,1=1,...,n
i, Yr(di—di)=2
Let S = GUG'. In (8], Section 2, Jerrum and Sinclair define the following set of
transitions for a Markov chain on S.
i. Select an edge {7,7} uniformly at random.
u. fG€Gand {i,5} isanedge in G, let H =G - {1,7}.
ui. If G € G', {i,7} is not an edge in G, and the degree of i is less than d;, let
H =G+ {i,j}. If the degree of j exceeds d; select an edge {j, k} uniformly at
random and delete it.
. In all other cases, do nothing.
Let dyn: = max(dy,...,d,), andlet N = % Z? d; be the number of edges in G. Say
that d s p-stableif N > d?, .. — dina;- In (8], Jerrum and Sinclair remark without
proof that a Markov transition matrix defined by i. - iv. will have a subdominant
cigenvalue that is bounded by a polynomial in (d,,...,d,) if d is p-stable. We now

show this explicitly.

Proposition 3. The subdominant eigenvalue of the transition matrix induced by
1.-tv. satisfies the bound
B S 1 (Vdmes) ™
8
Proof: Qur approach follows that of Jerrum and Sinelair [7], [8]. As in these
papers, we will define a system of canonical paths in S, use these to bound 5 and
then esthmate the subdominant cigenvalue of the transition matrix. As a first step

we prove a graph theory lemma.

2. &1 0

Cv,

Lemma 4. Let G = (V. ) be a connected graph. Suppose £ = £ U
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&2 = 0, and that |e;(v)] = |e2(v)| for all v € V, where €;(v) and ez2(v) are the
edges in & and &, respectively, incident to v. Then G has an Eulerian circuit
{vo,v1,..-,V2n~1,v0} such that {vei,v2i41} € & and {vai41,v2i42} € & fori =
0,...,n-1.

Proof: It is easy to see that |£] is even, say |£| = 2n. The proof follows by an
induction on n. The smallest n for which the conditions of the lemma can be
satisfied is n = 2. For n = 2, we have V = {1,2,3,4}, & = {{1,2},{5,4}} and
& = {{2,3},{4,1}}, within isomorphism. y = {1,2,3,4,1} is then the desired

circuit.

Now suppose the lemma holds for n = k, and let n = k+ 1, so |€] = 2k + 2. Choose
a vertex vg and edges {vo,v;} and {v;,v;} in £ and &, respectively. These exist,
by hypothesis. Continuing in the same manner, select vertices v;,...,v:n so that
{v2i,v2i41) € &1, {v2i41,v2i42)} € &2, for i =1,...,m ~ 1 and all edges are distinct,
until you reach the first vertex v;,, where such a choice cannot be made. [ claim
Vzm = vg, for if {vam,w} appears in the circuit for all w adjacent to vy, then an
odd number of edges adjaccat to va,m must have been crossed prior to stage 2m.

The only vertex in the grapa satisfying this requirement is vq.

Let v = {vo,v1,...,v2m=-1,v2m ). If n = k 4 1, then ¥ is the desired circuit, and
we are finished. So, suppose m < k +1. Let F = {{vi-1,vi},1 = 1,...,2m}, let
E' = £\ F and let G' be the subgraph induced by £'. Write G' = Gy U---UG,
as the union of connected components. Then it is easy to see that each component
G| satisfies the hypotheses of this lemma, with fewer than 2k edges. Thus, suitable

circuits can be coitructed on each G; and adjoined to . The lemma follows. »

Corollary 5. Let G = (V,£) be a connected graph as in Lemma 4. Suppose there
exist vertices vy, v_ € V osuch that |e;(vy )] = |e2(vy)]+1 and |ey(v2)] = Jex{vo)] -
1; for all other vertices, suppose ¢y(v) = ez(v). Then, G has an Eulerian path
{ro,v1,...,vn) such that vg = vy, v,y = v, and {va,,va41) € &1, {v2s1, v2isz) €

Sy fori=0,...,n-1

We now proceed to construct our set U of canonical paths. Let G, H € ¢ and let

D = G & H be the symumetric difference of G and H. Write D = Dy U --- U D,

7



where Dy,..., Dy are the connected components of D. Any vertex v in D has the
property that the numbers of edges in G\ H and H \ G incident to v are the same.
Thus Lemma 4 applies to each component D;.

Order the Eulerian subgraphs of GU H in some fashion, and for each such Eulerian
subgraph, suppose a starting vertex vg has been identified. Suppose that Dy, ..., D;

is an increasing sequence in the order.

The canonical path from G to H will be defined by unwinding D, ..., Dy in order.
The unwinding will be carried out as follows:

1. For each component D;, fix a starting vertex v. Let D; be an ordering of the
Eulerian circuits on D;, with v as starting (and ending) vertex. Note that
every Eulerian circuit induces an ordering on the edges of E;.

it. Let ‘B; be the set of Eulerian circuits on D; such that edges in G\ H have odd
parity and edges in H \ G have even parity. (That is, if v = {vo,...,v2m},
then {vai,vai+1} € G\ H and {vai41,v2i42} € H\ G for i from 0 to m — 1.)
By Lemma 4, B, is not empty. Let 8 be the first element in B;, with respect
to our ordering of D;.

ui. Suppose 3 = {vg,...,v2m}. The unwinding begins by removing {vo,v1}. The
next m — 1 steps consist of adding {ve;—;,vs;} and 1emoving {v2;,vai41} in
sequence for 1 = 1,...,m — 1. The final step is to add the edge {vam-1,v2m}-
Let {M, A’} be a transition in the canonical path from G to H, and let v be a
vertex in M 0 M. By the definition of canonical paths, eg(v) N ey (v) C easnnr(v)
Cec(v)Uey(v). Let S=MUM & (G5 H). By clementary set theory,
les(u)] = learoar(v) © (ea(v) © en(v))|
= [earoar(v) U (e (v) @ en(v))] = learusr(v) Niea(v) = eq(v))!
= leg(v)Uen(e)] = (learoar (V)] = Jea(v) Nen(r)])
= leg(v)] + len(v)] — |earusr(v)]
There are three possible cases to consider. Let 1 be the unique vertex of degree
2 M 5 M. Then Jeypnap(v)) = d, + 1, and as G.H € G, |es(i))] = d, - 1.
Alternatively, let ; be the starting vertex in the cycle ¥ we are unwinding. Then
lear() = fearr())l = d, — 1,50 es(y))] = d, + 1. For all other vertices k, leg(v)] =

tepr(v)] = learnsr ()] = di, so Jes(v))] = di.
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Define a function o,(G, H) encoding G and H by setting

(GeaH)ys(MUM') if 7 begins or ends a circuit

o.(G,H) = {(GGB HY®(MUM') - ez, otherwise

Here, eg ¢ is the first edge in 5.

From the discussion in the last paragraph, it follows that ¢,(G,H) € S. Further-
more, o is one-to—one, since we can reconstruct G and H from o, (G, H) and MUM'.
To see this,let K = o,.(G,H)®d(MUM'). If0,(G,H) € G, then K = Dy U---UDy.
If 0,(G,H) € ', then K = Dy U---U D;_; UD; UD;4y U---U Dy, where D; has
precisely two vertices of odd degree. We recover D; by adding an edge joining the
two odd-degree vertices. I; is the unique component containing M N M’, so D; is

the current subgraph in the unwinding.

Let C; be the set of Eulerian paths on D; starting at the initial vertex v; and having
the property that edges in o,(G, H) have odd parity prior to M & M’ and even
parity afterwards. 8 € C; so C; is not empty. Let 8 be the first path in Ci. Then
3 induces a path on D; such that edges in G and H have odd and even parity
respectively. Thus, 3 = 8. G and H can now be identified by unwinding § forwards

or backwards from M, as necessary.

To extend canonical paths to the whole of S, we will define a function G — G that
will associate a “nearest” member of G to each element in S. f G € G, let G =G.
Now, let G € G'. Following Jerrum and Sinclair[§), define a graph G € G that is

“close” to G. There are two cases to consider.

t. Suppose there are vertices ¢ and j such that &} = d, — 1 and d; =d; - 1. If
{1.j} €& 1t G =G+ {i,5}. If {i.j} € £, then find an edge {k,1} such that
{1k} and {;.1} are not edges and let G = G+ {i,k} + {J,1} — {k,{}. As shown
in Jerrum and Sinelair[8], section 3, such an edge always exists, if the sequence
d is p -stable.

i, Alternatively, suppose there is a vertex 1 such that d] = d, — 2. Again, find an
cdge {k, 1} such that {i, k} and {i.1} are not cdges and let G = G + {i, k} +
{1.1} = {k1}.

In either case, since G and G differ by at most two edges, at most N? graphs G can

9



be associated with any G.

For G, H € S, define the canonical path from G to H by connecting G to G, H to
H, and defining the canonical path from G to H as in the preceding paragraphs.

Then, the number of canonical paths crossing any given edge {M, M'} is at most
N*|G'|. As before, let 7 = max, Q(e)"1 Y ve, 3¢ T(2)7(y). Then,

1
— -1 4 — 5
n=0Q(e)” maxgﬁe |2 < 2N|S| x N*|S| x ISP = 2N

Apply Theorem 2 to get

<1- L pN-10
f1 <1 32N

This completes the proof of the proposition. m

Remark: In [8], Jerrum and Sinclair describe an alternative algorithm for almost
generating uniform random graphs in G(d) by tranlating the problem into one
of simulating random perfect matchings. Additional structure provided by the
matching problem gives the bound

2
. 91\’
I (16n4(n/2+2N)(n— 1) (lg'|) )

for an arbitrary family G(d). The p-stability condition gives a sufficient condition
for |G'|/|G| to be polynomially bounded. If d is p-stable, then

1 2
B <1- -
16N4nt(n/2 4+ 2N)(n —1)

4. Simulating Binary Matrices:

Let r = (ry,...,7m) and s = (s1,...,5,) be integer sequences such that A(r,s) is
not empty. For convenience, write A = A(r, s).

We will need notation for some other spaces of binary matrices. Let 2’ = U(r',s'),

where the union is taken over sequences ' = (r,...,rl.) s’ = (s},...,s,) such that
ri=r;—1 re=rk, k#i
o R g
s;=3;—1 si=s1, l#]

10



for some indices i and j. Similarly, let 2" = UA(z",s"), where v’ = (r},...,7mm),

s = (sY,...,s), and

ro_ " 1 . ..
r"x—r'l_l T‘,-z—T‘.z-l Ty =Tk, k?’-’ll,lz

Shi=sih—1 s, =s,-1  si=s, l#i,5
for pairs of indices 1,1, and j;,j2. Let S=2AuA' uA".

Let M € 2. Define transitions for a Markov chain on 2 as follows:
t. Select two entries m,, and m,, uniformly at random from the entries in M
equal to 1.

u. If myy = my, =0, interchange my, a.... my, with m,, and m,,.

111. Otherwise, do nothing.
Let P be a transition matrix corresponding to this transition scheme. Let 7(M) =
|A]=1, M € 2. Then, it is not hard to show that 7 satisfies the detailed balance
equations for P. If {X,} is a Markov chain on 2 with these transitions then {X,}

is reversible, with stationary measure .

We wish to estimate the rate of convergence of the distribution of X, to 7. Asin
Section 3, we will construct a system of canonical paths in 2 . The construction
will be done so that for any matrices J and F in 2 and any edge {M, M'} lying on
the canonical path from J to F, we can map (J, F') uniquely to a matrix in S.

Proposition 6. There exists a set I' of paths joining every pair of points in

A such that the number of paths containing a fixed edge is bounded above by

2(("5") +1) ISk

Proof: Let J,F € 2 and suppose J & F = C, where C is an elementary circuit.
There is a standard algorithm for transforming J to F by interchanges. (See,
for example, Brualdi[2], Section 3.) Let C have edges {z1,v1}, {v1,22}, {z2,¥2},
oo {7k, ue }, {yr, 71 }. Without loss of generality, suppose the matrices representing
Jand Fhave Jy=Ju=...=Ju=1Ji2=Ju=... = Jicjx = Ju =0,
Fh=Fop=...=Fu=0F=F3=...=F,=F,y =1, and J;j = F;
clsewhere. Let p be the smallest integer such that Jp, = 0; Jiy =0, s0 p < k.
The first p interchanges will be (p,p - 1;1,p),(p - 1,p-2;1,p-1),...(2,1;1,2).

11



10 N 0 1

/1 1 0 \ /1 0 1 \

1 = 1 0 1 = 0 1

0 = x 1 0 0 = = 0 1

1 % x x 1 1 » x x 0 1

1 = = * x 1 0 1 *x * x x 0 1

KO * % * x x ] ) kl * % * *x x 0 )
(a) (b)

1 1 01

/0 1 1 \ 1 0 1 \

0 = 1 1 1 = 01

0 = = 1 1 1 = = 0O

0 * *» *x 1 1 * * x 1 0

LO * % x *x 1 1 1 *» * * %= 1 0 )

1 * * *x x % 1 ) KO x * ¥ % 1

(<) (d)

Figure 1. The matrices (a) J, (b) F, (¢) J® F, and (d) J', where m =n =17,
p=4

These p interchanges produce a matrix J' where J; 4y 1 = Jpia 542 = .. = J3p = 1,
Jot1p42 = -+ = Jioyp = Jiy =0, and J; = F;; elsewhere. (See Figure 1 for
typical examples of J, F', J @ F, and J'.) Repeating this process will eventually
transform J to F. Note that this algorithm proceeds by unwinding a series of
elementary circuits which are cortained in C, with the possible exception of one

edge. Call these circuits subsidiary.

It will be convenient to represent canonical paths somewhat differently. Associate
cach matrix A € 2 with the matrix A = diag(M,1,1). We can map the canonical
path from J to F to a somewhat different path from J to F As before, let p be
the smallest integer such that J,, = 0. Let the first interchange in the canonical
path from J to F be (1,m+1;1,n+1). If p=2, let the second interchange be
(1,2;n4+1,2); otherwise, let the second interchange be (p,.m+2; p,n+2). The next
p—1interchanges willbe (m+2,p—-1;p,p-1),(m+2,p-2;p-1,p-2),...,(in+

2,1;2,1),(1,m + 2;1,n + 1); these correspond precisely to the interchanges (p,p —
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1;1,p)(p-1,p—-2;1,p—-1),...,(2,1;1,2). Finally, make the interchange (1,p;n +
1,n + 2). The unwinding will continue using the (p,n -+ 1) entry.

Let {M,M'} be an edge in the canonical path from J to F. Without loss of
generality, write the corresponding interchange as (I,{ — 1;1,1). We can translate
this to an interchange on the modified canonical path in a standard fashion. Suppose
{M, M'} lies on a subsidiary cycle, with initial entry ¢ and final entry p. Transform
M and M’ by the interchanges (¢,m+1;1,n+1), (I,m+2;1,n+2), (I,p+1;1,n+1)
and (¢g,m+1;1,n+1), -1,m+2;l-1,n+2),(I-1,p+1;1,n+ 1), respectively.
This will transform M and M’ into matrices M* and M* such that M* is joined to
M* by the interchange (I — 1,m + 2;1,1 —1). Alternatively, suppose {M, M'} does
not lie on a subsidiary cycle. Then it is easy to see that (I,I — 1;1,1) corresponds
to the interchange (I,! — 1;n + 1,1). To summarize, each edge {M,M'} in the
interchange graph can be transformed to a modified edge {M*, M*'} by either one

or three interchanges.

'I:he first P + 1 interchanges transform J into a matrix J', where j,',“’ﬁ_z = o £3
Jek =1L Jpq1p42 = piaprs = oo = Jp_yp = Jiy =1, and J{; = F;; for all other
1<:<m, 1< 7 <n. Again, we can repeat this process to transform J into F

eventually.

Now, suppose J @ F' has connected components G,,...,Gy, and let G be one of
these components. As in Section 3, specify a starting vertex for each G; and order
the Eulerian circuits starting from that vertex. By Lemma 4, each G; has at least
one Eulerian circuit in which entries from J and F alternate. Let v be the first
such circuit. Write v as {z1,¥1,%2,¥2,-.-,Zs,Yu, Z1}. Let p=min{j: z; = 2;,1 <
j}Amin{j : y; = yi,1 < j}, and let j(p) be the unique j < p such that z; = z,
or y; = yp. Then {7, v, }s- -1 {¥o-1, 20} or {Yjip): 2041} -1 {Zp,Up )} as
the case may be, forms an elementary circuit, which we denote C,. Repeating this
argument successively on G\ Cy, G\ (Cy UC,) and so forth, we come to an ordered

decomposition of G into clementary circuits Cy, ..., Cx.

Since v is an alternating Eulerian circuit, each C; is an alternating elementary cir-
cuit. We can pass from J to F by successively unwinding Gy, ...,G,. In turn, each

component G can be unwound by unwinding the elementary circuits Cyy,...,Cj,
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in order. So the unwinding algorithm for elementary circuit:. extends to an unwind-

ing algorithm for Eulerian circuits, thence for the differenc. between elements in

A

To count canonical paths containing {M', M}, we will first encode modified paths
containing {M*', M*} as a pair (p,0) € {+1,-1} x S. Let J = diag(J,1,1), F =
diag(F, 1,1), and let S(J, F') be the principal m xn submatrix of J@ F@(M*' vM*).
The degree sequence of S will depend on the position of {M*', M*} in the unwinding.
There are three possible cases:

i. {M*',M*} ends an elementary circuit.

it. {M™',M*} lies inside an elementary circuit, but is not on a subsidiary circuit.
Let z; be the starting vertex of the elementary circuit, and let y; be the
current vertex being changed. Calculations similar to those in section 3 show
that degg(z;) = ri — 1, degs(y;) = s; + 1. Furthermore, it is not hard to see
that the first edge (¢,7') of the current elementary circuit is in S.

1. {M*',M*} lies on a subsidiary circuit, with starting edge {p,p'} and ending
edge {g,q'}. As before, we will have degg(z;) = r; — 1, degg(y;) = s; + 1.
Also degg(z,) = rp + 1, and degg(zy) = ry + 1, and the edges {p,p'}, and
{¢,¢'} arein S.

With this in mind, define

o k(.z IZ‘) in case i.
o(J,F)=1( S(J,F)— e in case it. .
S(J,F)—eii—epp —eqq in case iii.

ansst
{ 1 1 cases t. and 1.
#id, F)=(¢ +1 incaseui, if {(p—q)p'~¢')>0
-1 incaseur, if (p—gq)(p' ~¢') <0.
Here, ¢, i1, €p pr, and eq o are the edges joining {i,¢'}, {p,p'}, and {q.q'}, respec-
tively.

Examining the definition will show that o(J, F) € % in case i., o(J, F') € %' in case
i, and a(J, F) € A" in case iii.
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We claim thet we can determine J and F from (p,0) and {M*M*'}. To see this,
first observe that we can reconstruct S(J, F) from (p,0). In cases i. and ii., this is
identical to the argument in Section 3. In case 7::., we have to identify the edges

€i,i, €p,p', and eg o and restore them to o to obtain S..

Since there are precisely two rows in ¢ with diminished row sums, one of which
corresponds to M* @ M*', and since M*[n + 1,i'] = 1, reconstructing e; ;» is auto-
matic. To reconstruct e, ,» and eg ¢, note that M*[p,n + 1} = M*[g,n + 2] = 1,
S = 8p — 1, and sy = s — 1. This leaves two possible pairs of edges, which are
distinguished by the value of p.

Knowing S (j ,I':‘), we can reconstruct J and F' by an argument similar to that in
Section 3. Let J @ F have connected components Gi,...,G,. There is a unique
component G containing the edges {u,v} and {v,u'}. For j # «, let 7; be the first
Eulerian path on G; such that edges in S and M* v M* alternate. For 1 < j < &,
odd parity edges are in J and even parity edges are in F'; for & < j < r, the parity of
edges is reversed. Let v, be the first Eulerian path on G, such that its elementary
circuit decomposition Ej,...,E, gives even parity to edges in S preceding {u,v}
and odd parity to edges in S following {v,u'}. Odd parity edges preceding {u,v}
and even parity edges following {v,u'} are in J; Even parity edges preceding {u, v}
and odd parity edges following {v,u'} are in F. Thus, J and F can be reconstructed
from M* v M* by adding and deleting appropriate edges.

Since (J,F) — o(J, F) is investible, it follows that the mapping is one-to-one.
Each encoding o(J, F) is in S. Thus, the number of canonical paths containing
{M*™' M*} is at most |S]|.

It remains to compute the number of modified transitions {M*', M*} corresponding
to each possible transition {M', M}. Depending on its position in the the elemen-
tary circuit E, cach transition {AM', M} can be transfermed to a modified transition
{M*', M*} by cither one or three interchanges. If one interchange is required, then
the interchange affects one of the two vertices in M\ M’; this gives two possible pairs
{M*', M=}, If three interchanges are required, then {Af', M} lies on a subsidiary
cycle, Thus, we need to choose the beginning and the end of the subsidiary cycle,
by choosing any two ones in a column modified by {Af’, Mf}. This can be done in at
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most 2 (m,;l) possible ways. Thus there are at most 2 (’"2'1) + 2 pairs {M*',M*}

corresponding to each pair {M’, M}. The total number of canonical paths crossing

{M',M} is then at most
(") )e

As before, the estimate of the number of canonical paths gives an estimate of the

subdominant eigenvalue of the transition matrix of {X,}.

Proposition 7.

msi-g O ) ) &)

Proof: Again, we have n = max, Q(e)™! 2 e, 3¢ T(2)7(y). Using our bound on
the number of canonical paths,

m-—1 \ 1
< 0 . —
skl ((757)+1) g
() B4
2 2] 2]
N m-—1 |S]
<9 . L
<(3)(("")*) @
The proposition now follows from Theorem 2. »

Proposition 8. Let A = A(r,s). Then a sufficient condition for |S!/|2| to be
polynomially bounded is that N > 2(rmaz — 1)(Smaz — 1) + 1.

Proof: Let (r},...,r,,) and (s},...,s;) be the row and column sums for a matrix
w . Then (o — 1)(Shar = 1) € (Fmaz = 1)(Smaz — 1). Suppose N > 2(rmar —
1)(Smazr = 1)+ 1. Then N =1 > 2(rmazr = 1)(Smaz — 1) 2 2(Tinar — 1)(Smar — 1),
so A((ry, ... 7 )i(s),...,5%)) is itself a p-stable set. As the number of p¢ “ible
sequences (ry,.... rn) and (s,...,s,) is a polynomial in m and n, it follows that

the |S]/|2| is polynemially bounded. »
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Our estimate of f§; gives a bound on the average error committed by using sample
averages of our Markov chain to approximate integrals. We state our bound for a

general chain.

Let {X,} be a Markov chain on a finite state space, with stationary distribution .
Let f be a function :;md let py =3 f(z)7s, a} =5 (f(z) = ps)*ny. For m,n >0,
let A =n"1Y""" f(X;). If E, denotes expectation for the chain with X = z,

then the following estimate is routine:

Proposition 9.

_ 2 2__ ,T-—l m\( _1___ n) 2
Ez(Am.n /‘f) < n(l—ﬂl) (1‘}"‘ ﬁ] / 1+n(1—/31)'81 O¢ (13)

where 7, = min, n(z).

Proof: For m ~ Poisson(N), this estimate is given in Aldous[l] Proposition 4.2,
with ¥ in place of B and some differences in notation. For fixed m; 1t suffices
to follow the argument given in Aldous to his expression (4.9), and then to observe
that for any fixed m > 0 and any A, A™ = (1 + (A = 1))" < exp(m(A —1)). »

Let {X,} be the Markov chain on 2, with transition matrix P, and suppose we
wish to estimate py for some function f; here, n(z) = |A|~!. To estimate us with
MSE smaller than €, we can take m > log M/ log 8y, giving 1 + || < 2. Then
take n > 80}/6(1 — B1) to give E;(Amn — py)? <e.
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